
Excess Description Length: An Information
Measure for Generalizable Structure

Learned from Finite Data
Elizabeth Donoway

Department of Physics
University of California, Berkeley

Berkeley, CA, USA
donoway@berkeley.edu

Abstract—Learning algorithms transfer predictive structure
from data into model parameters, yet existing information-
theoretic quantities primarily characterize either dataset com-
plexity or asymptotic learning costs. We introduce excess de-
scription length (EDL), a compute-indexed measure of the
generalizable information extracted by a learning algorithm
from finite data. EDL admits an operational interpretation via
prequential coding: it is the excess codelength incurred on first
exposure to data relative to a predictor whose expected log-
loss equals the final model’s population loss, thereby excluding
memorization effects on the training set. We establish that EDL
satisfies fundamental properties of an information measure—non-
negativity, additivity under product structure, monotonicity in
compute, and a processing bound on extractable information—
while explicitly decoupling the roles of data (information source)
and computation (extraction mechanism). A finite-data saturation
bound formalizes that compute cannot extract more generalizable
information than exists in the data. We show that EDL penalizes
overfitting through the generalization gap, distinguishing genuine
learning from memorization. These results establish EDL as
a rigorous foundation for quantifying information transfer in
learning systems operating on finite datasets.

Index Terms—Excess description length, minimum description
length, prequential coding, generalization, information measures

I. INTRODUCTION

Information theory provides tools for quantifying uncer-
tainty in data and complexity in models, yet learning al-
gorithms occupy an intermediate role: they transform finite
datasets into predictors that generalize beyond observed sam-
ples. Classical quantities such as entropy, mutual informa-
tion, and minimum description length (MDL) characterize
properties of data or hypothesis classes [1], [2], [4], while
recent work explores dataset structure under computational
constraints [8], [9]. However, these frameworks do not directly
measure how much generalizable predictive information a
learning algorithm extracts from finite data as a function of
computation.

Modern learning commonly uses computation exceeding
dataset size, revisiting the same finite data over many epochs.
In this regime, naive prequential codes that charge loss for
every repeated example conflate computation with new infor-
mation. We seek a quantity that:

0 10 20 30 40 50
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

|S|

(a) Single epoch

0 50 100 150 200
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

|S|

*

(b) Multi-epoch
Train loss L(T) MDL EDL

Fig. 1. EDL measures generalizable information extracted from finite
data. The data S (size |S|) are fixed. (a) After one epoch, EDL (blue hatched)
reflects structure learned from S so far. (b) Multi-epoch training on the same
data improves generalization (L(θT) = ε∗ < ε), yielding larger EDL. Total
area under the first-epoch curve (up to |S|) is MDL (gray); EDL is the portion
above final population loss L(θT). Additional training extracts more of the
learnable structure in S without adding new information.

1) Measures generalizable (population-level) information,
not training fit;

2) Explicitly indexes computation, allowing multi-epoch
training;

3) Charges information only for first exposure to each da-
tum; and

4) Satisfies axiomatic properties expected of information
measures.

We define excess description length (EDL), a compute-
indexed quantity measuring how much population-predictive
structure is transferred from data into model parameters. EDL
equals the prequential codelength incurred during a single
pass through the data, minus the codelength that would be
required using the final trained predictor. This “first-exposure
area above final loss” (Fig. 1) captures information absorbed
into the model during learning.

Our main contributions are:

• A formal definition of EDL that decouples data from
computation (Section II);

• Proofs that EDL satisfies non-negativity, additivity, pro-
cessing bounds, and compute monotonicity (Section III);

• A saturation theorem showing computation cannot extract
more information than exists in finite data (Section IV);

• Analysis of how EDL distinguishes generalization from
memorization (Section V);

• Connections to regret, MDL, surplus description length
(SDL), and concurrent work on epiplexity (Section VI).

An extended companion paper [10] applies the EDL frame-
work to analyze capability emergence in language models.

II. SETUP AND DEFINITIONS

Let (X,Y) ∼ D be drawn from a data distribution D over
X × Y . Consider a conditional model family {pθ(y|x) : θ ∈
Θ}. We use log-loss (in bits): ℓ(θ;x, y) ≜ − log2 pθ(y|x). The
population loss is

L(θ) ≜ E(x,y)∼D[ℓ(θ;x, y)]. (1)

Let S = {(xi, yi)}ni=1 ∼ Dn be a training set. A (possibly
randomized) learning algorithm A maps an initialization θ0
and data S to parameters θT = A(θ0, S;T) after compute
budget T (measured in optimization steps, epochs, or FLOPs).

A. First-Exposure Prequential Codelength

To define a codelength that does not scale with repeated
epochs, we use the first-exposure sequence from a single pass
through a random permutation of the data.

Let π be a uniform random permutation of
[n], and let Sπ denote the ordered sequence
((xπ(1), yπ(1)), . . . , (xπ(n), yπ(n))). Let θπi denote the
parameters after processing the first i examples once.

Definition 1 (First-exposure prequential codelength).

MDL1(S;A) ≜ Eπ

[
n∑

i=1

ℓ(θπi−1;xπ(i), yπ(i))

]
. (2)

This is the expected codelength to encode the training labels
using the evolving model during first exposure, averaging over
presentation orders.

Remark 1 (Implementation). For SGD-style methods, θπi is
the state after i minibatches in the first epoch. More generally,
θπi can be defined by running A on prefixes or via a specified
online variant. The results below depend only on the induced
sequence {θπi }ni=0.

B. Excess Description Length

Definition 2 (Compute-indexed excess description length).
For compute budget T , define the (population) EDL:

EDLT (A, n) ≜ ES∼Dn [MDL1(S;A)− n · L(θT)] , (3)

where θT = A(θ0, S;T).

This definition formalizes the operational estimator “area
of the first-epoch prequential loss above the final population
loss,” while allowing θT to come from multi-epoch training
(T ≫ n).

Remark 2 (Sign of EDL). Unlike entropy, EDL can be
negative when the learning algorithm degrades population-
level predictions (see Corollary 4). Positive EDL indicates
successful extraction of generalizable structure; negative EDL
indicates overfitting or other pathologies.

Remark 3 (Operational estimation). In practice, EDLT is
estimated by: (1) computing cumulative loss during the first
epoch of training, (2) estimating L(θT) on held-out data after
training completes, and (3) taking the difference.

III. PROPERTIES AS AN INFORMATION MEASURE

We establish that EDLT satisfies properties expected of
an information measure, paralleling Shannon’s axioms while
explicitly parameterizing computation.

A. Prequential Interpretation

Theorem 1 (Expected area form). Assume S ∼ Dn and π is
uniform over permutations. Then

EDLT (A, n) =

n∑
i=1

E
[
L(θπi−1)− L(θT)

]
. (4)

Proof. By the tower property, conditioning on θπi−1:

E[ℓ(θπi−1;xπ(i), yπ(i)) | θπi−1] = L(θπi−1),

since (xπ(i), yπ(i)) ∼ D is independent of θπi−1 (which
depends only on earlier examples). Summing over i and
subtracting n · L(θT) gives the result.

This expresses EDL as the cumulative excess population
loss along the first-exposure trajectory relative to the final
model.

Remark 4 (Algorithm-dependence as a feature). The expected
area form makes explicit that EDL depends not only on the
final model, but also on the learning trajectory. Two algorithms
that reach the same θT have different EDL if one incurs
larger population loss during first exposure. This is by design:
EDL measures the efficiency with which an algorithm extracts
generalizable structure from data; it is not an algorithm-
independent notion of final information content.

An algorithm that learns slowly incurs high regret and thus
high EDL, reflecting inefficient compression of the data stream.
If one desires an intrinsic quantity independent of learning
dynamics, the appropriate object is supA EDLT (A, n), which
optimizes over algorithms such that optimal learners dominate.

B. Non-Negativity

Definition 3 (Population-monotone algorithm). Algorithm
A is population-monotone if along the induced trajectory,
E[L(θt+1)] ≤ E[L(θt)] for all t.

This condition holds for gradient descent on convex losses,
SGD with sufficiently small learning rate, and algorithms with
early stopping that prevents overfitting.

Theorem 2 (Non-negativity). If A is population-monotone
and T is at least the length of the first-exposure trajectory,
then EDLT (A, n) ≥ 0.

Proof. Population-monotonicity implies E[L(θT)] ≤
E[L(θπi−1)] for each i ≤ n. From Theorem 1, each term
E[L(θπi−1)− L(θT)] ≥ 0, so the sum is non-negative.

C. Monotonicity in Compute

Theorem 3 (Compute monotonicity). If T2 ≥ T1 ≥ n and
E[L(θT2

)] ≤ E[L(θT1
)], then

EDLT2
(A, n) ≥ EDLT1

(A, n),

with equality iff E[L(θT2
)] = E[L(θT1

)].

Proof. Since MDL1 depends only on the first-exposure tra-
jectory (independent of T for T ≥ n):

EDLT2 −EDLT1 = n(E[L(θT1)]− E[L(θT2)]) ≥ 0.

Corollary 4 (Overfitting decreases EDL). For T ≥ n, if ad-
ditional compute increases population loss (overfitting), EDL
decreases. Thus EDLT is maximized at the early stopping
point T ∗ = argminT E[L(θT)].

Remark 5 (Negative EDL). When overfitting is severe—
specifically, when n · L(θT) > MDL1(S;A)—EDL becomes
negative. Though not a valid codelength, negative EDL in-
dicates that training has degraded the model’s population-
level predictions relative to its earlier state, indicating that
the algorithm has “unlearned” generalizable structure.

D. Additivity

We first show that EDL decomposes into per-example
contributions expressible as KL divergence reductions.

Theorem 5 (KL decomposition). EDL decomposes as:

EDLT (A, n) =

n∑
i=1

E
[
∆KL(θ

π
i−1, θT)

]
, (5)

where ∆KL(θ, θ
′) = DKL(pD∥pθ) − DKL(pD∥pθ′) is the KL

improvement, with pD(y|x) the true conditional.

Proof. Using L(θ) = HD(Y |X) + DKL(pD∥pθ), we have:

L(θπi−1)− L(θT) = DKL(pD∥pθπ
i−1

)−DKL(pD∥pθT).

The result follows from Theorem 1.

Theorem 6 (Additivity for independent data). Let D =
D1 × D2 over (X1,Y1) × (X2,Y2), and let S1 ∼ Dn1

1 and
S2 ∼ Dn2

2 be independent. Suppose the model factors as
pθ(y1, y2|x1, x2) = pθ(1)(y1|x1) · pθ(2)(y2|x2) and A respects
this factorization. Then:

EDLT (A, S1∪S2) = EDLT1(A1, n1)+EDLT2(A2, n2). (6)

Proof. Under the factorization, losses on D1 examples depend
only on θ(1) and vice versa. Thus:

MDL1(S1 ∪ S2;A) = MDL1(S1;A1) +MDL1(S2;A2),

L(θT) = L1(θ
(1)
T) + L2(θ

(2)
T).

Subtracting gives the claimed decomposition.

E. Decomposition for Sequential Learning

We now consider settings where data arrive in stages, as in
curriculum learning or continual learning. Unlike the additivity
result (Theorem 6), which applies to independent data with
factored models, the following decomposition applies to data
from the same distribution processed sequentially.

Definition 4 (Warm-start learning). Given datasets S1 and S2

and compute budgets T1, T2, a warm-start procedure:
1) Trains on S1 for T1 steps, yielding θT1

;
2) Initializes from θT1

and trains on S2 for T2 steps, yielding
θT .

We write A|S1→S2
for such a procedure and

EDLT2|θT1
(A, S2) for the EDL of the second stage.

Theorem 7 (Sequential decomposition). Let S1 ∼ Dn1 and
S2 ∼ Dn2 be independent samples from the same distribution
D. For a warm-start procedure A|S1→S2

:

EDLT (A, S1 ∪ S2) = EDLT1(A, n1) + EDLT2|θT1
(A, n2)

+ n1 · E[L(θT1
)− L(θT)], (7)

where the final term is the transfer benefit: the improvement in
population loss from training on S2 after S1, scaled by total
sample size.

Proof. The total first-exposure codelength decomposes as:

MDL1(S1 ∪ S2;A) = MDL1(S1;A) +MDL1(S2;A|θT1
),

where A|θT1
denotes the algorithm initialized at θT1

.
The total EDL is:

EDLT = MDL1(S1 ∪ S2;A)− (n1 + n2)L(θT)

= [MDL1(S1;A)− n1L(θT1
)]

+
[
MDL1(S2;A|θT1

)− n2L(θT1)
]

+ (n1 + n2)L(θT1)− (n1 + n2)L(θT).

The first bracket is EDLT1(A, n1). For the second bracket,
note that EDLT2|θT1

(A, n2) as standardly defined would sub-
tract n2L(θT), not n2L(θT1

). We have:

MDL1(S2;A|θT1
)− n2L(θT1

)

=
[
MDL1(S2;A|θT1

)− n2L(θT)
]
+ n2[L(θT)− L(θT1

)]

= EDLT2|θT1
(A, n2) + n2[L(θT)− L(θT1

)].

Substituting back:

EDLT = EDLT1
(S1) + EDLT2|θT1

(S2)

+ n2[L(θT)− L(θT1)]

+ (n1 + n2)[L(θT1)− L(θT)]

= EDLT1(S1) + EDLT2|θT1
(S2)

+ (n1 + n2 − n2)[L(θT1
)− L(θT)]

= EDLT1
(S1) + EDLT2|θT1

(S2)

+ n1[L(θT1
)− L(θT)].

Remark 6 (Transfer benefit). The term n1[L(θT1
) − L(θT)]

quantifies how subsequent training on S2 can retroactively
increase the effective information extracted from S1. When
continued training reduces population loss, the original data
is reinterpreted as having contributed more generalizable
structure. This formalizes the intuition that curriculum strate-
gies and staged training can enable more efficient structure
extraction. Quantitative applications to pretraining and fine-
tuning appear in [10].

F. Mutual Information Bound

Lemma 8 (EDL bounded by mutual information). For any
distribution D, sample size n, and population-monotone
algorithm A with marginal-calibrated initialization (i.e.,
pθ0(y|x) = p(y) so that L(θ0) = HD(Y)):

EDLT (A, n) ≤ n · ID(X;Y). (8)

Proof. From Theorem 1: EDLT (A, n) =
∑n

i=1 E[L(θπi−1) −
L(θT)].

By marginal-calibrated initialization, L(θ0) = HD(Y).
Population-monotonicity ensures L(θπi−1) ≤ L(θ0) = HD(Y)
for all i. The minimum achievable final loss is L∗ =
HD(Y |X).

Therefore, each term satisfies:

E[L(θπi−1)− L(θT)] ≤ HD(Y)−HD(Y |X) = ID(X;Y).

Summing over i = 1, . . . , n gives the result. The bound is tight
when the final predictor achieves Bayes-optimal loss.

Remark 7. Marginal-calibrated initialization is standard
practice and information-theoretically optimal when no data
have been observed. Without this assumption, the bound
becomes EDLT ≤ n(L(θ0)− L∗).

G. Processing Bound

We establish that data processing cannot increase the supre-
mal extractable information.

Definition 5 (Representation-restricted algorithms). Let f :
(X × Y)n → Z be any measurable mapping from datasets
to representations. Let Af denote the class of learning proce-
dures that access the data only through f(S).

Theorem 9 (Processing bound). Let f : X × Y → X ′ × Y ′

be a deterministic transformation applied elementwise, with
pushforward distribution D′ = f∗(D). Then:

sup
A′

EDLT (A′, f(S)) ≤ sup
A

EDLT (A, S). (9)

Proof. Any algorithm A′ on f(S) can be simulated by Ã on
S that first computes f(S) internally. The simulator achieves
identical MDL1 and final predictor, hence identical EDL. Since
Ã is valid on S:

EDLT (A′, f(S)) = EDLT (Ã, S) ≤ sup
A

EDLT (A, S).

Taking the supremum over A′ yields (9).

Corollary 10 (Sufficient statistic invariance). If f(x, y) =
(T (x), y) where T (x) is a sufficient statistic for Y given X ,
then: supA′ EDLT (A′, f(S)) = supA EDLT (A, S).

Remark 8 (Information lost in processing). The gap between
the two sides of (9) quantifies predictive information destroyed
by f . When f is lossy, no algorithm—regardless of compute—
can recover the lost structure.

IV. FINITE-DATA SATURATION

A fundamental property of EDL is that computation cannot
extract more generalizable information than exists in the data.

Theorem 11 (Saturation bound). For any population-
monotone algorithm with marginal-calibrated initialization:

sup
T

EDLT (A, n) ≤ n · ID(X;Y), (10)

where ID(X;Y) = HD(Y)−HD(Y |X) is the mutual infor-
mation.

Proof. Immediate from Lemma 8.

Corollary 12 (Decoupling data from compute). Let T1 = n
(end of first epoch) and T2 > T1. Then:

EDLT2
= EDLT1

+n · E[L(θT1
)− L(θT2

)]. (11)

Equation (11) shows that repeated optimization on finite
data increases EDL only through further reductions in pop-
ulation loss. No resampled example is redundantly encoded
as additional information. Multi-epoch training that improves
generalization extracts more of the structure already present
in S, without inventing spurious information.

V. MEMORIZATION VS. GENERALIZATION

EDL automatically distinguishes learning from memoriza-
tion through the generalization gap.

Theorem 13 (Generalization gap penalty). Consider algo-
rithms Agen achieving L(θT) → L∗ and Amem achieving zero
training loss but L(θT) = L0 > L∗ (memorization without
generalization). Assuming similar first-exposure trajectories:

EDLT (Agen)− EDLT (Amem) = n(L0 − L∗) > 0. (12)

Proof. If both have similar initial behavior,
MDL1(S;Agen) ≈ MDL1(S;Amem). The EDL difference is:
n · L(θmem

T)− n · L(θgenT) = n(L0 − L∗) > 0.

Remark 9. The assumption of similar first-exposure trajec-
tories holds when both algorithms use the same architecture,
initialization, and optimization during the first epoch, differing
only in regularization or training duration.

Corollary 14 (Random labels yield zero EDL). For data with
random labels Y ⊥ X , EDLT (A, n) → 0 for any algorithm,
regardless of training loss achieved.

Proof. With Y ⊥ X , the optimal predictor is p∗(y|x) = p(y),
achieving L∗ = H(Y). No algorithm can improve on marginal

prediction for the population, so L(θT) ≥ H(Y). A well-
calibrated algorithm achieves MDL1 ≈ nH(Y), yielding
EDLT ≈ 0.

This validates EDL as measuring learnable structure: ran-
dom labels contain no generalizable information, and EDL
correctly reports zero regardless of training effort.

VI. CONNECTIONS TO PRIOR WORK

Table I compares EDL to related information measures.
MDL and prequential coding. The prequential approach

to MDL [3], [5] uses cumulative predictive loss as description
length. EDL extends this by subtracting the final model’s pop-
ulation loss, isolating information absorbed into parameters
from residual encoding cost.

Surplus description length. SDL [6] measures the asymp-
totic cost of learning an optimal predictor. Under consistency
(L(θT) → L∗ as n, T → ∞), EDL converges to SDL.
However, EDL explicitly indexes computation and remains
meaningful when T ≫ n (multi-epoch training), where SDL
is not directly defined.

Regret. The first-exposure codelength relates to on-
line learning regret [7]. Define regret relative to θT :
RT (Sπ) =

∑n
i=1[ℓ(θ

π
i−1; zπ(i))−ℓ(θT ; zπ(i))]. Then EDLT =

ES,π[RT (Sπ)] + n(E[Ltrain(θT)] − L(θT)), connecting EDL
to expected regret plus a generalization correction.

Epiplexity. Concurrent independent work [9] introduces
“epiplexity” ST as a compute-bounded notion of structural
content in data. Given compute bound T , epiplexity measures
the description length of the optimal model that can be trained
and evaluated within T .

EDL differs in three respects: (i) it evaluates a specified
algorithm rather than optimizing over all feasible programs
to evaluate the data, (ii) it uses an explicit population-loss
reference to exclude memorization, and (iii) it remains mean-
ingful when compute exceeds dataset size (T ≫ n) by fixing
a first-exposure codelength.

In the one-pass i.i.d. regime, the prequential proxy for the
epiplexity estimator takes an “area above final loss” form
that is geometrically similar to single-epoch instantiations of
EDLT when the empirical risk coincides with the population
risk. Our framework extends naturally to multi-epoch training:
EDLTconverged

> EDLTsingle−epoch
when additional epochs

improve generalization.

VII. DISCUSSION

We have introduced excess description length as a rigorous
measure of generalizable information extracted by learning
algorithms from finite data. The central innovations are:

1) Decoupling data from compute: EDL counts infor-
mation only for first exposure, while allowing arbitrary
subsequent computation to extract structure.

2) Population-level measurement: By referencing popula-
tion loss rather than training loss, EDL measures gener-
alizable information, automatically penalizing overfitting.

TABLE I
COMPARISON OF INFORMATION MEASURES FOR LEARNING

Property H K SDL ST EDL

Non-negative ✓ ✓ ✓ ✓ ✓
Additive ✓ ±O(1) ? ? ✓
Processing bound ✓ ✓ ? ? ✓
Finite data – ✓ × ✓* ✓
Multi-epoch – – × × ✓
Compute-indexed × × × ✓ ✓
Operationally computable ✓ × Asymp. Bounded ✓

H: Shannon entropy; K: Kolmogorov complexity; ST : Epiplexity

*Epiplexity assumes data are sampled from an effectively infinite
distribution with small generalization gap; sufficiently large compute bounds
(exceeding the domain of the distribution) can violate this assumption.

3) Axiomatic foundation: Non-negativity, additivity, pro-
cessing bounds, and saturation establish EDL as a proper
information measure.

The supremum supA limT→∞ EDLT (A, n) measures the
maximum generalizable structure any algorithm can extract
from n samples, in the limit of unlimited compute. This defines
an intrinsic property of (D, n) analogous to channel capacity;
characterizing this quantity remains open.

Practical implications. EDL provides a foundation for:
(1) evaluating learning algorithms by information extraction
efficiency [10], (2) understanding when multi-epoch training
is beneficial versus when it overfits, and (3) quantifying the
value of data augmentation and curriculum strategies.

ACKNOWLEDGMENT

E.D. thanks John Schulman, Jan Leike, Hailey Joren, Ethan
Perez, Michael R. DeWeese, Fabien Roger, and Eric Easley
for helpful discussions and feedback.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 1948.

[2] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, no. 5, pp. 465–471, 1978.

[3] J. Rissanen, “Universal coding, information, prediction, and estimation,”
IEEE Trans. Inf. Theory, vol. 30, no. 4, pp. 629–636, 1984.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Wiley, 2006.

[5] A. P. Dawid, “Statistical theory: The prequential approach,” J. Royal
Statistical Society A, vol. 147, no. 2, pp. 278–292, 1984.

[6] W. F. Whitney, M. J. Song, D. Brandfonbrener, J. Altosaar, and K. Cho,
“Evaluating representations by the complexity of learning low-loss
predictors,” arXiv:2009.07368, 2021.

[7] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge University Press, 2006.

[8] Y. Xu, S. Zhao J. Song, R. Stewart, and S. Ermon, “A Theory of Usable
Information under Computational Constraints,” International Conference
on Learning Representations, 2020.

[9] M. Finzi, S. Qiu, Y. Jiang, P. Izmailov, J. Z. Kolter, and A. G. Wilson,
“From entropy to epiplexity: Rethinking information for computationally
bounded intelligence,” arXiv:2601.03220, 2026.

[10] E. Donoway, H. Joren, F. Roger, J. Leike, “Excess description length of
learning generalizable predictors,” arXiv:2601.04728, 2026.

APPENDIX A
TRANSFER LEARNING DECOMPOSITION

The sequential decomposition (Theorem 7) enables a precise analysis of how pretraining affects fine-tuning information
requirements. We state a rigorous version of the transfer learning result, making explicit the assumptions that govern when
pretraining reduces fine-tuning EDL.

Corollary 15 (Transfer learning decomposition). Consider fine-tuning on Sft ∼ Dnft

ft from either:
• Random initialization θ0 (cold start), yielding first-exposure trajectory (θcoldi)nft

i=0 and final model θcoldT ; or
• Pretrained initialization θTpre

(warm start), yielding trajectory (θwarm
i)nft

i=0 and final model θwarm
T .

Let EDLcold ≜ EDLT |θ0(A, Sft) and EDLwarm ≜ EDLT |θTpre
(A, Sft) denote the respective fine-tuning EDLs. Then:

EDLcold − EDLwarm =

nft∑
i=1

E
[
Lft(θ

cold
i−1)− Lft(θ

warm
i−1)

]
︸ ︷︷ ︸

trajectory advantage ∆traj

+nft · E
[
Lft(θ

warm
T)− Lft(θ

cold
T)

]︸ ︷︷ ︸
endpoint correction ∆end

. (13)

The following special cases clarify when pretraining reduces fine-tuning EDL:
(i) Identical convergence. If both procedures converge to the same final population loss, i.e., E[Lft(θ

warm
T)] = E[Lft(θ

cold
T)],

then

EDLcold − EDLwarm = ∆traj =

nft∑
i=1

E
[
Lft(θ

cold
i−1)− Lft(θ

warm
i−1)

]
. (14)

(ii) Trajectory dominance. Under the additional assumption that the pretrained initialization yields uniformly lower population
loss along the entire first-exposure trajectory (i.e., Lft(θ

warm
i−1) ≤ Lft(θ

cold
i−1) almost surely for all i ≤ nft) we have

∆traj ≥ 0, and hence
EDLwarm ≤ EDLcold +∆end. (15)

If additionally ∆end ≤ 0 (warm start converges at least as well), then EDLwarm ≤ EDLcold.
(iii) Bounds on trajectory advantage. The trajectory advantage satisfies

nft · min
1≤i≤nft

E[∆Li] ≤ ∆traj ≤ nft · max
1≤i≤nft

E[∆Li], (16)

where ∆Li ≜ Lft(θ
cold
i−1)− Lft(θ

warm
i−1).

Proof. By the expected area form (Theorem 1):

EDLcold =

nft∑
i=1

E[Lft(θ
cold
i−1)]− nft · E[Lft(θ

cold
T)], (17)

EDLwarm =

nft∑
i=1

E[Lft(θ
warm
i−1)]− nft · E[Lft(θ

warm
T)]. (18)

Subtracting:

EDLcold − EDLwarm =

nft∑
i=1

E[Lft(θ
cold
i−1)− Lft(θ

warm
i−1)] (19)

− nft · E[Lft(θ
cold
T)− Lft(θ

warm
T)] (20)

= ∆traj + nft · E[Lft(θ
warm
T)− Lft(θ

cold
T)], (21)

which establishes (13).
Part (i) follows immediately by setting ∆end = 0.
For part (ii), trajectory dominance implies each summand in ∆traj is non-negative, hence ∆traj ≥ 0. The stated inequality

follows from rearranging (13).
For part (iii), note that ∆traj =

∑nft

i=1 E[∆Li]. Since the sum of nft terms is bounded below by nft times the minimum
term and above by nft times the maximum term, the bounds follow.

Remark 10 (Interpretation for transfer learning). Corollary 15 formalizes the intuition that pretraining amortizes learning:
structure transferred from Dpre reduces the information that must subsequently be extracted from Sft. The fine-tuning EDL
measures only the downstream task-specific information in Sft not already encoded as inductive bias during pretraining. This

yields a principled measure of transfer: the reduction in EDL attributable to pretraining measures how much relevant structure
was transferred through the pretrained initialization.

In settings where Dpre and Dft exhibit substantial shared structure, pretraining yields a correspondingly large reduction in
fine-tuning EDL; conversely, when the two distributions share little structure, the reduction is negligible.

Remark 11 (When the simple approximation fails). A natural approximation suggested by Corollary 15 is

EDLcold − EDLwarm ≈ nft · [Lft(θ0)− Lft(θTpre
)], (22)

corresponding to the upper bound in part (iii) evaluated at i = 1. This approximation is accurate when the gap ∆Li between
cold-start and warm-start loss remains approximately constant throughout the first epoch—i.e., when the training curves are
parallel.

In practice, cold-start training often catches up to warm-start training as optimization progresses, causing ∆Li → 0 as
i → nft. In such cases, the trajectory advantage ∆traj is substantially smaller than the bound (22) suggests. The exact
decomposition (13) captures this effect by integrating the instantaneous gap along the trajectory rather than extrapolating
from initial conditions.

Conversely, when the pretrained model lies in a qualitatively different loss basin that maintains its advantage throughout
training, the approximation (22) is tight.

Remark 12 (Negative transfer). The decomposition also characterizes negative transfer: when pretraining on Dpre harms
performance on Dft. If Lft(θTpre

) > Lft(θ0)—i.e., the pretrained initialization is worse than random for the downstream task—
then ∆L1 < 0. Unless cold-start training degrades rapidly (unusual for well-designed optimizers), here we expect ∆traj < 0
(negative transfer), indicating that pretraining increased the information that must be extracted from Sft.

This provides an information-theoretic diagnostic for negative transfer: compute the fine-tuning EDL from both initializations
and compare.

	Introduction
	Setup and Definitions
	First-Exposure Prequential Codelength
	Excess Description Length

	Properties as an Information Measure
	Prequential Interpretation
	Non-Negativity
	Monotonicity in Compute
	Additivity
	Decomposition for Sequential Learning
	Mutual Information Bound
	Processing Bound

	Finite-Data Saturation
	Memorization vs. Generalization
	Connections to Prior Work
	Discussion
	References
	Appendix A: Transfer Learning Decomposition

